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On the Limit Behavior of a Multi-Compartment Storage Model

with an Underlying Markov Chain I: Without Normalization

by

Eric S. Tollar

ABSTRACT

The present paper considers a multi-compartment storage model with one way

flow. The inputs and outputs for each compartment are controlled by a denumerable

state Markov chain. Assuming finite first moments, it is shown that certain

compartments converge in distribution while others diverge, based on appropriate

first moment conditions on the inputs and outputs.
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1. INTRODUCTION

Using a stochastic model to approximate the behavior of various physical

storage systems has become wide spread (for example, see Moran [6], Prabhu [7]).

Initially, the random mechanism underlying the models was assumed to be inde-

pendent, but in 1965 Lloyd and Odoom [5] proposed a model in which a dependent

structure was feasible by assuming an underlying Markov chain as part of the

random mechanism. The stochastic model was later expanded to having an under-

lying semi-Marko process, and a specific one compartment storage model with

underlying semi-Nlarkov process was considered by Puri [8], Puri and Senturia [9],

[10], Balagopal [1], Puri and Woolford [11], and others.

In this paper, we will consider a multi-compartment storage system with one-

way flow, similar to that of Puri and Senturia. However, we will only consider

the model with an underlying Markov chain; the more general case for semi-Markov

processes to be considered in a later paper. In this model, material will flow

into the system via compartment 1. Each of the subsequent compartments will get

material from its immediate predecessor by "demanding" a certain amount of mate-

, "rial. The previous compartment will then transfer the material demanded, or all

the material in the compartment, depending on which is smaller. Finally, the

*system will lose material by "demands" placed on the lal.t;copartment, ;.hirA har

dealt with as abov-e- ". *

In section 2 we will give the mathematical formulation of the model, and the

. closed form for the amount in each compartment. In section 3 we will establish

_ the limit behavior of the compartments without normalization.

o- . *. . * .. . . .
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*2. 117, M,.ODECL

Let {Xn , n=O0, 1, .. )be an aperiodic, irreducible, positive recurrent

Markov chain with state space J1, where we take J to be denumerable. We denote

the elements of J by {1, 2, ... ). Define the transition matrix for the Markov

chain P = pi by

P(X~jIX~~) ~ij,(2.1)

and let iT =(1T1 . i2 .. be the stationary probability measure satisfying wtP=w.

Further, we define the number of visits to stage j £ J in n steps by

n
M. (n)= I (X. j) (2.2)

S iO 0

* where 1(A) is the indicator function of set A.

For the k-compartment model to be considered, the transmission of material

* in the system will be controlled by the underlying Markov chain'{X Iand a col-n

* lection of infinite k +1- tuples governing the transfer of material. These

k I- tuples are defined as follows. For each i J, let

* {4j)=Vo(i)i Vin(i)i ... I Vkn(i)): n=l1, 2, ...) be a sequence of i.i.d.

k +I-tuples, independent of (X nI and {V n(j)) for j si. Wle will insist that the

following conditions hold.

i) P( { Z n n(i) 0, V j. (i) 01) 0, Vi, Vn>O0.

O~e~j ~k(2.3)

ii) P(V. (i) <0) OVi, Vj , %In>0.
j ,n

As will be seen later, the assumptions (2.3) are not mathematically neces-

sary. However, it is not clear that the model itself wuld be reasonable without

them. Without (2.3i), we would have the problem of simultaneous transfers in
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more than one compartment, and it is not clear what should be done in this case.

Without (2.3ii) we would not have a one-way flow model, and it would be there-

fore possible to have compartments with negative amounts of material in them.

To define the equations for the total amount of material in each of the k

compartments, we first define C(n)= (Co(n), C1 , (n), ..., Ck(n)), where Ci(n)

represents the total amount of material that has left compartment i by step n.

Then it is easy to see that the amount of material in the various compartments,

denoted by Z(n) = (Z1(n), ..., Zk(n)), is governed by the relation

Zi(n)= Ci_(n) -Ci(n). (2.4)

We define C(n) recursively by

n
Co(n) V O (x ) C, (2.5)

il Oi i .

C!, for n -0
Ci(n) 1 V (2.6)

min[Ci1(n). V i~n (Xi+Ci (n - 1)], for n>OZ.,

where C , C*, ..., C* are the initial values of C(O) (possibly random),

satisfying

c5>c*> ... a.s. (2.7)

By examination of equations (2.4) through (2.7), it is easy to see the

system will function as explained in the introduction.

To shorten the expressions for subsequent theorems, the following notation

is introduced.

0, for n-O

S1 (n), n
Vti (Xi ) + C1, for n > 0.
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MOE . The following relationship holds for 1:< i < k, n al.

' Ci (n) min (S0 (j1) + [S1 (j2) - Sl(jl)] + + [Si(n) - Si(ji)])[': o:j .. ,:5 ji ,n

The proof will be omitted, as it is straightforward by induction, establishing

the validity for each cell i by assuming it is true for the previous cells.

fHA : The following relation holds for 1:< i: k, n > O:

Zi(n) = min [S0 (jl) + ... + (Si_1 (n) -Si_l(Jil))]
0O<Jl I... <5ji~l In

- min [So(Jl) ... + (Si(n) -Si(ji)) ] .O<1jl< ... I<ji :n0

The proof is omitted, as it follows immediately from the theorem.

In the next section, we establish the limit behavior of Z(n) without

normalization.

3. LIMIT BEHAVIOR OF THE PROCESS

In this section we establish the limit behavior of the process Z(n) without

any normalization, when a first moment condition is assumed. The necessary mo-

ments are the standard ones for processes defined on a Markov chain. That:is,if

w is the stationary measure for the Markov chain and if for every j CJ, {Y n(j)}

* is an i.i.d. sequence for each j, independent of the Markov chain and (Yn(i)} if

i j, then we define

E Y 7 j EY (3.1)

For l1k we will refer to compartment L as subcritical, critical or

•........... ........ ...... ,...&•..m.-." :.•,, ,.-........... •... _
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supercritical when E V- min (E Vi) is greater than, equal to, or less than

0 i<Z 1

zero, respectively. It will be established that as n tends to infinity, the

subcritical compartments converge, while the critical and supercritical compart-

ments diverge.

The following definitions will also be used in this section.

Definition: (} is called the dual tarkov chain of {X n  if

1) P(X0 - j ) = V i for all j, and

2) P(Xn+1 = iIn=j) = ff WiiPij"

As has been shown (see ginlar [31), we have that n I is essentially the "reverse"

of {Xn), that is, if X0 has distribution 7,

P(X =i = P(X = in' R m+n io)" (3.2)

We will define

Zi(n) min (S. (Jl)+[Si_ 2 ( 2 )-S 2 (J)1...+[S0 (n)-S 0 (J.l ])
0O 5jl1 ! ... 5 Ji il !5n l jl + g - j2 ^i 2 l) " S(3 )

i ((3.3)

05j m 5.5n (i(Jl)+[Sil(j2)-Sil(jl) 0( 0

where for given n,
m
~Vzmi i i ) for m<n

SY(m) a (3.4)

ij Vi(Ri
)  C for m=n.

It can then be easily shown if X0 -~  that

!P(ZlI(n) <gxl, ... k (n ) !Sxjk) =P(2 I(n) <Xl, ... Z(n) !Sxk). (3.5)
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Definition,: (R n is called the auxiliary Markov chain of'{X n if R has initial

* distribution v, and transition probabilities as in (2.1). As shown in Hoel,

* et al. [41, if we define

then T <-a.s. and

We will also define

- F 0, for n =0
S(n) =

~ve (Ri) CI!, for n >0, (3.8)

and define

2 .(n)= min( 0 +9mj)- -~i,]

1 I~2 1

The main theorem to be established in this section is the following:

THEORF14 3.1. For any arbitrary distribution of X0 and Z(0), if E lV.I< cD for

O~gj :k, then as n-1--, P(Z 1(n) :9x I .. Zk(n) :xk)+'P(Zlsxl ... , Zk:xJk)

- for all continuity points (xl, .. ~x)of the distribution of some random

*variables Z1 ... , Zk where
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0 if min (E i)
O 0-i<j

P(Z. w
Pi ifEV > min (E V.).

The proof of this theorem requires several steps, which are broken down

into the lemmas and theorems that follow. The first such lemma, which is stated

without proof, is a straightforward extension of the well known result that

lim max ( i Yi(Xi))=Z* a.s., where P(Z*<c 0)=O.I(E Y2O)+1.I(E YCO),
n-*-o O.j~n i=O

for {Y (j)) as in (3.1).

I&. If for all j c J, {Y (j) = (Yl(j), .... Y,(j)): n>l is an i.i.d.

secduence, independent of (Y (i)} for.i* j, and if E IYiI <- for

t k

1 !5 is<, then lim max I I Yk (Xi))-Z* exists almost surely,-n-+- O.-Jl !5... : jefgn k=l1 i = 1 i

where

1 if EYiO for all i, 1:i e
P(Z* < CO) = 4

0 otherwise.

The next theorem to be established is the following.

EM . Let X0 have initial distribution if, E V, j<® for 0<j<k. Then

for all initial distributions Z(O), as n*-

P(ZlI(n) :9x, , ... , Z k(n) <9xk) -P (Z l1 5 X1 , ... Zk : x k )

for all continuity points (xl, ... , Xk) of the distribution of (Zl, ... ,

where for ltsk,

~ . . . . - . . . . . . . .
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P(Z< cc) 0 I (EV< min E Vi) +1. I(E V > min E V.).
O i</ O i<~ IT 1

From (3.5), we have that we need only consider (Z1(n), ..., Zk(n)) to

complete the proof. The almost sure behavior of each Zi(n) is established as

n-*; the joint behavior then follows automatically. From (3.3) we can see

that for any i,

Zi(n) =max (-S(j 1 ) - - [So(n) - So (Ji])
100O5 I 5 . .. :5 i-<n

max ('S.- ( (l o " ' ( n ) - So ( j i _- 1 )

0O<Jl<5... !SJi_l!gn

max [ i-k(Jk) i-k+l(jk) - 0 (n))

05j 1  :...Ji !n k=a

i-i (3.10)
- max ( l [(i k l(jk ) - Si - k (j k ) ] - S ( n ) )

0 < J ... ji_ l<n k= 1

i
!S max 1 [9 [i-k(Jk) - i-k+l (Jk)1)

O<l .j i-n k=1

i-1

max C k Si-kl(jk) - Si-k(jk) ] ).
O J<.. Jil<n k=l

By defining

Rm( i) = Sm-l(i) - Sn(i) (3.11)

(3.10) reduces to

i
Z i (n) max [ Ri k+l(Jk) ]

O<Jl...Ji-Sn k=1

i - 1 (3.12)

! max [ X Rik(Jk)].
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For i=1, we have for all initial distributions of ZI(O), as n--,

Zl(n) =max (RI(j))-*Z1 , a.s.,
05j n

where

P(Z 1 <-) 0 • I(E V O +1 - I(E V >F Vo ).

1r IT O I**T .irl 1 ITo0

(For details, see Puri and Woolford [11].) Since this is the condition desired

for i =1, we proceed by induction, assuming the theorem holds for Z!5i and

showing it is true for i + 1.

Let

;= max t: E V - min (E V.)} (313)
0<-'-<i 0 j i "T.

Then from (3.12) we have

1 +1 i

Zi (n) = max [ Ri~k 2 (Jk)] - n

0<j 1 -... <Ji+ n k= t +I

w
max [ R.,_k+ l (j k )] .

'" 0<-J<... <j:<n kk

Since for w+ 1 !5 t i, ETVe > min (E7lVk) =E V,.,, by the induction hypothesis

Z (n) -Z a.s., where P(Zz <-) = 1. Consequently, the behavior of Z (n)
t t zi+l

depends upon the term

i+l
(n)= max [ 0

1+- O-< ... <Ji~l:5n k Iil +

(3.14)

. max R Rk+l(Jk)].
• j O< 5l<... 5j!5n k=l

,I,

[- . ... i -. ' . .- -i'i'-- .- "i ---.- i-.i-i-i -i> '-'i .i. -. .-- ?> ----- .-. iii.---> i i. '> i . .-.- " -. . *- -- :> . >> . ili---'2 .ii
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Note that if w=0 (3.15) reduces to

i+1

Yi+l(n) max [ iR.k+ 2 (k)], (3.15)
0<.j1<...<ji+1 n k=

which has the desired properties, as can be easily established by appealing to

Lemma 3.2 (after rewriting (3.15)%as in the lemma). Thus, assume w2>1.

Clearly for all M < n

i- w +1
max ( I Ri.k+2(Jk))0 0-S j, f ' '  <Ji wl <M k= lI

w
+ max I RII.k+l(jk)M!5jl<5... <9 i n k =I

W
max ( I R-k+l(k)) (3.16)

0 - j ... !5 j n k=1

Yi+l (n)

i- W +1
max (C R ik+2(jk)).

0<J1!5<... !<jiw+l k=1 i

By Lemma 3.4, to be established later, we have for all w fl and M >0, there is

an NM > M where for all n> NM,

W W

max I Ri.k+l(jk)) = max ( I Rw~k+l(Jk)). (3.17)0O<jl<... !5j,,!5n k=lI M Sj 1 s... !Sj w !n k=l

Thus, from (3.16) and (3.17), we get

i-w+l
max ( I R i)k+2(Jk))

O sJ, s '' .. :5 l - w+ l -s m k al

! 1 i+l (n) (3.18)

i-w+l

max ( I Ri-k+2(jk)).
0<!S j, .... !5 ji.w+ ..n k



From Lemma 3.2, it is clear that the behavior of

i--k .

depends on EV1q, - ErVi.

CASE 1. ENVW -E V cO<: In this case, we have from Lemma 3.2 that

i-w + 1
max ( I R ik+2(ik))+*Y a-s.,

where P(Y <-~) =1, independent of the initial distribution. Thus, for almost

all w £ fl, and c >0, we can choose an M where

max (~ R Ci+2j))

1 - W +1 (3.19)

max x i-k+ 2(ik)) +E'

Consequently, it follows from (3.19) that Y +1 (n)-1-Y a.s.

* CASE II. EmVw- ~E Vi+, O: In this case, for almost every we Q and any R >0,

there is an M where

3.- p + 1

max (~Ri c(jk)>R

Thus, from (3.18) we get that Y (n)-i-- a.s.. 0

Now the Leizma cited in Theorem 3.3 is established.

LEMM 1~. For v, as defined in (3.13), for almost all w e 0, and for ever M >O,
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there exists an NM >M such that for all n >NM,

max i R1 .k+l(Jk))= max I R .k+l(Jk ))

0 O Jl<!5... :Jwfn kil M:SJI1:5... :5j W :n k=l

P-ROO: First, we show that for every M >0 there exists an Nm >M where

w w

max Rwk+l(jk))= max C X R,k+l(jk)). (3.20)
0O<Jl<5... :5 ., N, k 1 M :5J < ... :5j :Nk I

Since E V 5 min E V. (the inductive hypothesis in Theorem 3.3 is still con-
0: j < I

sidered to hold), we have that Z,Jn)+cm a.s.. However, if (3.20) is not true,

* then there exists an M where

w
zwn max ( .kn <19<... <Sjwn k= 1 wklk

0 5jl < M
w - 1

max ( . R k (3.21)
O5j :5... <Jw :9 n k wl

1 W-1

T. max (R (0)) <
0!5j I <M

* Thus, we get that (3.20) must hold. We now show that if M>0, then there is an

N where for all n >NM,

M

w w
max C X .k+iCk)) = max ( . R.kl4 (J)). (3.22)!5'. O<Jl,..<j n , 1 1 l..j fn k I

First, for C! as defined in (3.8), let C a O, 0! isw. Then by induction,

it is enough to show that if (3.22) is true for n, then it must be true for n+ 1.

Assume (3.22) holds for n, and that for M!a 5... 5aaw S n,

." . 1
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w w

j IR Wk+ 1 ak)= max R w-klJk)). (3.23)

Show for indices where 0 5bb1 :5 . .. .5 b w n + and b 1 <HM, there exist indices c

where R wkI(b ) CWIc), M:5 C : .. :5c. W5n+1 Clearly if b w 5n,

then c =a will suffice. Thus, assume b zn +1.

Let J min {k: b.i ~a .. Note j > 1, j -_ w, and bi- :9n. Let
15 kw 1 w -

i I(i <j) +b Ii ij). d =b I (icD)+a I (i kj) . Then we have

w w

ij RWi+ (Cc) d R W. l(bi)

i bl_+,, -1+ i R i+(i)

w w

* ~ R~,i~a- I Rw, C)

Since c 1 a 1 M and d w a w sn, get from (3.23) that
1 w

Thus, we have shown by induction (3.20) is true when qC. .. -0.

The case where CO~zC*, ... !*! does not follow automatically, duo to the

peculiar definition of (in) in (3.4) necessary to deal with initial distribu-

tions. However, as can be easily verified, if indices a are selected which

*satisfy (3.23) then for any indices 0~gb I . :bf where b I <M. by defining
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w w

" as abovc, we have that P.o+l(bk) < P.w '-(c )', and c ' . Thus, thei~l i --1~ li

lermna is established. D

It should be pointed out that in the above development, Lemma 3.2 was usee on

the sums S e(n), Ogi <k. As stated, this lemma is not applicable. However,

since the proof of Lemma 3.2 only requires n"1  -n)*E V a.s. (see Chung [2]),

the proof of the theorem is still valid, r e now proceed to the proof of theorem

3.1.

PMOOF OF TH.OREM 3.1. Using the concept of an auxiliary process, with defini-

tions (3.6), (3.7), (3.8) and (3.9), we note that for every c >0, there exist

M" and M1 such that

kiP(T<SMoil zi (MO) <M 1 > 1- e:.

Then for n>M O ,

kp(Zl(n)<:5xI ... gk(n)<5x k , T<5 OP z (M0) :5M1)

- fP(Zl ( n ) x ,  Z )X) (3.24)

k
:5P (ZI(n) <x 1  ... (n) <5xk , T&<MO ,  z M 1 + E

From (2.9), it is easy to see that if az>b i for 1i k, then
i~~~~~ ~ .. in :kT()=.

:..:P(Z l ( n ) < xl, ..

(3.25):-."S P(Zl(n) s x ,- ",Zk (n) !5Xk Z(O) =)

So-

. ................... *t
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Thus we get

PC2 1 n - MO) -, x, , ... k (n - MO) 5 xk 11l(O) = M1,  2k. (kC) = M1)-

-P(ZI(n- MO)  x,, ... (kn- Mo) 5Xk Z1i(O ) =-M1 , ... (kMl))- (3.26)

k<5PCZl (n)<5x I , .. ,Zkn) <9xk , T<:5 Moo IZiCmo ) <!5y-

i

Similarly we can establish that

kPCZI1(n) 5<xI , ... , Zk (n) 5<xk , T<5M O ,  iz i~o (M 0 )!5M1
i=i

(3.27)
P (Z (n - M4o) 5 xl, , 2k (n - Mo) :5 xk 21 (o) = o, ., k(O) =0).

Thus we get that

ClnN0<l ... 0knH) !5Xk1~CO ^1 1, ., k(0) '=Ml)-

<5PCZln) <x Zk (n) <x k ) (3.28)

5 PCl (n -MO) 5<xI , ... , Zk(n-Mo) <xkl(lC0) =0, ... , ZkCO) =O)+

Since the convergence of 21(n) is independent of any initial distribution from

theorem 3.2, from (3.28) we can see that

P(ZI(n)5x 1 , ... , Zk(n)<xk)*P(Zlx 1, Z5 X ). 0

4. CONCLUSION

The limit behavior of the compartments was shown to depend on the first

moments of the input/ output random variables. Since certain compartments

diverge, it is reasonable to desire asymptotic behavior of the critical and

e . . ... . .. .. .. .. .. . .. .. . .. . .- . . -. ... . .,. . . .,.. . ., ., . , .. . - . . . . ..
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supercritical compartments, appropriately normalized. The behavior of these

compartments are investigated in (Tollar (12]).

An area of further research would be on the characteristic function of the

limiting distribution of the compartments. Any such characterization seems

quite difficult, however. For the single cell model, results were obtained by

Puri [8], but the techniques used do not seen applicable to the present model.

Another area would be to alter the model to allow a more general flow

structure than one- way flow. However, unlike the present model, there appears

to be no closed form expression for Z.(n) in the more general framework. There-

fore the use of dual Markov chains will not be applicable to the more general

model. It appears that a more general technique using Markov chain theory on

arbitrary state spaces may be more fruitful.

% 2.*
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